Top 50 Popular Supplier
1 100,000D_อินเวอร์เตอร์ 173,730
2 100,000D_มิเตอร์วัดไฟฟ้า 172,613
3 100,000D_เครื่องมือช่าง 172,016
4 100,000D_อุปกรณ์ไฟฟ้าและอิเลคทรอนิกส์ 171,575
5 100,000D_เอซีมอเตอร์ 169,496
6 100,000D_ดีซีมอเตอร์ 168,531
7 100,000D_อุปกรณ์แคมป์ปิ้ง 167,528
8 100,000D_เครื่องดื่มและสมุนไพร 166,709
9 เคอีบี (KEB ) ประเทศไทย 158,926
10 100,000D_เครื่องใช้ไฟฟ้าครัวเรือน 157,501
11 100,000D_ของใช้จำเป็นสำหรับผู้หญิง 157,346
12 100,000D_ขายของเล่นเด็ก 156,541
13 E&L INTERNATIONAL CO., LTD. 66,440
14 T.N. METAL WORKS Co., Ltd. 61,063
15 ฟิลิปส์อิเล็กทรอนิกส์ (ประเทศไทย) จำกัด 48,618
16 บ.ไทนามิคส์ จำกัด 42,645
17 Industrial Provision co., ltd 38,310
18 ลาดกระบัง ทูลส์ แอนด์ ดาย จำกัด 37,405
19 Infinity Engineering System Co.,Ltd 35,353
20 สยาม เอลมาเทค (siam elmatech) 33,348
21 ไทยเทคนิค อีเล็คตริค จำกัด 32,554
22 ฟอร์จูน เมคคานิค แอนด์ ซัพพลาย 30,897
23 เอเชียเทค พาวเวอร์คอนโทรล จำกัด 30,298
24 บริษัท เวิลด์ ไฮดรอลิคส์ จำกัด 29,951
25 โปรไดร์ฟ ซิสเต็ม จำกัด 26,787
26 ซี.เค.แอล.โพลีเทค เอ็นจิเนียริ่ง 25,709
27 P.D.S. Automation co.,ltd 22,218
28 AVERA CO., LTD. 21,842
29 เลิศบุศย์ 21,040
30 ห้างหุ้นส่วนสามัญ เอ-รีไซเคิล กรุ๊ป 19,584
31 เทคนิคอล พรีซิชั่น แมชชีนนิ่ง 19,497
32 แมชชีนเทค 19,217
33 Electronics Source Co.,Ltd. 19,049
34 มากิโน (ประเทศไทย) 18,501
35 อีดีเอ อินเตอร์เนชั่นเนล จำกัด 18,475
36 ทรอนิคส์เซิร์ฟ จำกัด 18,071
37 Pro-face South-East Asia Pacific Co., Ltd. 17,910
38 SAMWHA THAILAND 17,603
39 CHEMTEC AUTOMATION CO.,LTD. 16,765
40 วอยก้า จำกัด 16,694
41 ดีไซน์ โธร แมนูแฟคเจอริ่ง 16,625
42 IWASHITA INSTRUMENTS (THAILAND) LTD. 16,623
43 Intelligent Mechantronics System (Thailand) 16,499
44 I-Mechanics Co.,Ltd. 16,427
45 เอส.เอส.บี สยาม จำกัด 16,403
46 ศรีทองเนมเพลท จำกัด 16,110
47 Systems integrator 15,979
48 เอ็นเทค แอสโซซิเอท จำกัด 15,881
49 Advanced Technology Equipment 15,698
50 ดาต้า เอ็นทรี่ กรุ๊ป จำกัด 15,666
06/10/2552 09:36 น. , อ่าน 43,235 ครั้ง
Bookmark and Share
หม้อไอน้ำแบบท่อน้ำหรือหลอดน้ำ
โดย : Admin
 



หม้อไอน้ำแบบท่อน้ำหรือหลอดน้ำ (Water Tube Boiler)


 

   

         หม้อไอน้ำแบบนี้ภายในท่อจะมีน้ำวิ่งอยู่ ส่วนภายนอกจะมีความร้อนหรือเปลวไฟอมรอบ เช่น หม้อไอน้ำท่อน้ำขวาง และหม้อไอน้ำท่อน้ำงอบางส่วน เป็นต้น


 
หม้อไอน้ำหลอดน้ำยุคแรก (Water-tube Boiler :Early Developments)

 
         พัฒนาขึ้นในปี 1867 โดย George Babcock และ Stephen Wilcock  โดยเรียกว่า หม้อไอน้ำที่ไม่ระเบิด (nonexplosive water tube boiler) เพื่อแก้ปัญหาการระเบิดของหม้อไอน้ำหลอดไฟที่เกิดบ่อยมากในยุคนั้น แต่ก็ยังไม่ได้พัฒนาต่อในเชิงพาณิชย์ จนกระทั่งต้นศตวรรษที่ 20 ที่มีการใช้กังหันไอน้ำซึ่งต้องใช้ไอน้ำความดันและอัตราไหลสูง จึงได้มีการพัฒนาหม้อไอน้ำหลอดน้ำต่อ
       เพราะเมื่อใช้ไอน้ำความดันและอัตราไหลสูงขึ้น หม้อไอน้ำหลอดไฟต้องใช้ตัวถังที่ใหญ่และความหนาต้องเพิ่มขึ้นด้วย และมัปัญหาการระเบิดร่วมด้วยจึงไม่เหมาะต่อการใช้งานในภาวะดังกล่าวต่อไป
       หม้อไอน้ำหลอดน้ำ ให้น้ำความดันสูงอยู่ในท่อเล็ก ๆ แทนจึงทนความดันได้สูงกว่า ในยุคแรก ๆ ลักษณะรูปร่างภายนอกคล้าย ๆ กับหม้อไอน้ำหลอดไฟ เพียงแต่น้ำและไอน้ำอยู่ในท่อ โดยมีก๊าซร้อนอยู่ภายนอก



  Straight-tube Boiler    

รูปแสดงตัวอย่าง หม้อไอน้ำท่อน้ำยุคแรก (a) วางดรัมตามยาว (b) ตามขวาง

 
หม้อไอน้ำหลอดน้ำตัวแรก เป็นแบบท่อตรง ดังในรูปใช้ท่อตรงขนาดเส้นผ่าศูนย์กลาง 3-4 นิ้ววางเรียงเยื้องสลับกัน 7-8 นิ้ว ต่อเข้ากับท่อร่วมแนวดิ่ง (vertical header) สองตัว ตัวหนึ่งเรียก downcomer หรือ downtake ทำหน้าที่จ่ายน้ำเกือบ ๆ อิ่มตัวให้แก่ท่อ ท่อร่วมตัวที่สองเรียกว่า riser หรือ uptake ทำหน้าที่รับน้ำผสมไอน้ำกลับขึ้นสู่ดรัม (drum) ข้างบน โดยที่น้ำสามารถไหลหมุนเวียนได้เองตามธรรมชาติ

 Bent-tube Boiler


รูปแสดงตัวอย่าง  หม้อไอน้ำ Stirlingสี่ดรัมยุคแรก

 

หม้อไอน้ำท่อโค้ง มีหลายแบบด้วยกัน แต่มีลักษณะโดยทั่วไปที่ใช้ท่อโค้งจำนวนหลายท่อ เชื่อมระหว่าง drum และ header การใช้ท่อโค้งก็เพื่อให้จุดต่อกับดรัมอยู่ในแนวรัศมีของดรัม คือตั้งฉากกับผิวดรัมนั่นเอง จำนวนดรัมที่ใช้มีตั้งแต่ 2-4 ดรัม ตัวอย่างหม้อไอน้ำท่อโค้งเช่น หม้อไอน้ำสเตอร์ลิงสี่ดรัม

 

Four-drum Early Stirling Boiler เป็นหม้อไอน้ำที่ใช้งานในยุค 1890 โดยมีดรัมของน้ำผสมไอน้ำด้านบน สามลูก และมี mud drum หนึ่งลูกอยู่ด้านล่าง


 หม้อไอน้ำหลอดน้ำยุคใหม่ (Water-tube Boiler : Recent Developments)

           จากที่มีการใช้ ผนังเตาเผาหล่อเย็นด้วยน้ำ (water cooled furnace walls) ที่เรียกว่าผนังน้ำ (water walls) ทำให้เครื่องกำเนิดไอน้ำ (steam generator) ยุคใหม่ เป็นการรวมเอา เตาเผา(furnace) อีโคโนไมเซอร์ (economizer) บอยเลอร์ (boiler)  ซูเปอรฮีทเตอร (์superheater) รีฮีทเตอร์(reheater)  เครื่องอุ่นอากาศ(air preheater) เข้าไว้ด้วยกัน 
 

     โครงสร้างดังกล่าว พอสรุปได้ว่า เครื่องกำเนิดไอน้ำยุคใหม่มีส่วนประกอบที่สำคัญดังนี้ คือ
 

Boiler Walls   Economizers
Radiant Boiler   Air Preheaters
 Water Circulation   Fans
Steam Drum   Stack
Superheaters and Reheaters 
     Convection Superheater
   ►  Radiant Superheater
  Steam-generation Control

  
รูปแสดงตัว ผังแสดงการไหลของเครื่องกำเนิดไอน้ำยุคใหม่ 


 


        จากรูปแสดงแผนภูมิของเครื่องกำเนิดไอน้ำโดยทั่วไป น้ำที่อุณหภูมิ 450 ถึง 500 0F จากทางออกของ HP FWH เข้าที่ economizer แล้วออกในสภาพน้ำอิ่มตัวหรือ มีไอน้ำปนเล็กน้อย แล้วเข้ากลาง steam drum น้ำจาก steam drum ไหลลงทาง downcomer ที่หุ้มฉนวนอยู่ด้านนอกเตาเผาเข้าสู่ header ไหลขึ้นทาง water tubes ที่เป็นผนังเตาในตัว หรือเรียกว่า risers รับความร้อนและกลายเป็นไอบางส่วน ทำให้เกิดความหนาแน่นที่แตกต่างกัน เป็นแรงขับให้เกิดการหมุนเวียนแบบธรรมชาติ ไอน้ำถูกแยกออกจากน้ำเดือดใน drum แล้วไหลผ่าน superheater ไปเข้า HP turbine แล้วกลับมารับความร้อนเพิ่มที่ reheater ก่อนส่งไปขับ LP turbine แล้วระบายไปที่ condenser
 

           อากาศภายนอกผ่าน FD fan ไปรับความร้อนที่ air preheater ก่อนระบายไอเสียทิ้ง อากาศที่อุ่นขึ้นไหลเข้าเตาเผาผสมกับเชื้อเพลิงแล้วเผาไหม้ได้อุณหภูมิในราว 3000 0F ก๊าซร้อนจากการเผาไหม้ถ่ายความร้อนบางส่วนแก่ water tubes แล้วถ่ายให้ superheater, reheater, economizer จนอุณฆภูมิลดลงเหลือประมาณ 6000F แล้วอุ่นอากาศที่ air preheater จนอุณหภูมิลดลงเหลือประมาณ 300 0F ก่อนระบายทิ้งทาง stack โดยถูกดูดด้วย ID fan และแรงดูดธรรมชาติจากความสูงของปล่อง stack

 

   Boiler Walls

        เป็นท่อน้ำหล่อเย็นผนังและรับความร้อน โดยจัดเรียงให้ชิดกันเพื่อดูดกลืนความร้อนได้มากที่สุด  โครงสร้างท่อเปลี่ยนแปลงไปมากดังในรูป จากเดิมเป็น (a) ท่อเปลือย (bare)  (b) ปะบนผนังทนไฟ (tangent) หรือฝังบนผนังทนไฟ (embedded)   (c) ท่อพืด (studded tubes)ในที่สุดปัจจุบันเป็นแบบ (d) แผ่นเมมเบรน (membrane)


รูปแสดงภาพด้านบนของหลอดน้ำชนิดต่าง ๆ
   เมมเบรนทำหน้าที่เป็นครีบเพื่อรับการถ่ายเทความร้อน ทำให้โครงสร้างแข็งแรงและเป็นเตาเผารับความดันไม่รั่วได้ ผิวด้านในไม่ต้องมีอะไรเสริม ส่วนด้านนอกจะมี ฉนวน และเหล็กประกบหลัง ตัวอย่างเช่นผู้ผลิตรายหนึ่งใช้ ท่อ 3นิ้ว วางระยะ 3.75 นิ้ว แบบที่สองท่อ 3 นิ้วระยะ 4 นิ้ว และแบบที่สามท่อ 2.75 นิ้วระยะ 3.75 นิ้วs

    Water Circulation       


รูปแสดงการไหลวนตามธรรมชาติ
    

น้ำนเวียนจาก steam drum ผ่านลงทาง downcomer เข้า bottom header ขึ้นทาง water tubes หรือ risers กลายเป็นไอบางส่วน แล้วกลับสู่ steam drum ทั้งนี้จะออกแบบไม่ให้เกิดการเดือดจนเป็นไอ 100% ในท่อ เพื่อป้องกันปัญหาความเสียหายจากท่อละลายหรือ burnout จากผลของ departure from nucleate boiling (DNB) ความหนาแน่นของน้ำใน มากกว่า two-phase mixture ใน risers


  
Steam Drum
       
หน้าที่หลัก คือการแยกไออิ่มตัว และยังมีหน้าที่อื่น ๆ คือ

 ♦   ป้องกันการ 'carryover' ของละอองน้ำเข้าสู่ ซูเปอร์ฮีทเตอร์ เพราะจะทำให้เกิดผงคราบที่ผนังท่อ ส่งผลต่อการ distortion และ burnout ได้
รับ feedwater จาก economizer
เป็นส่วนที่ทำการ chemical treatment และ blowdown
ต้องมีขนาดโตพอ ในการรับภาระที่เปลี่ยนแปลง ขนาดปรกติ เช่น ความยาว >100 ฟุต เส้นผ่าศูนย์กลาง >15 ฟุต มีมวลประมาณ 200-300 ตัน
  


รูปแสดงการแยกตัวของไอน้ำในดรัม (a) แรงโน้มถ่วง (b) เชิงกล บานเกล็ดและตาข่าย (c) แรงหนีศูนย์กลาง


  Superheaters และ Reheaters

            ซูเปอร์ฮีทเตอร์และรีฮีทเตอร์ ในเครื่องกำเนิดไอน้ำในโรงไฟฟ้าทำจากท่อขนาดเส้นผ่าศูนย์กลางภายนอก 2-3 นิ้ว ท่อขนาดเล็กจะทนความเค้นจากความดันได้ดีกว่า ขณะที่ท่อที่ใหญ่กว่าจะมีความดันตกน้อยและติดตั้งวางแนวให้ตรงง่ายกว่า ไม่มีการติดครีบภายนอกท่อเนื่องจากเพิ่มความเค้นและทำความสะอาดยาก ส่วนครีบภายในไม่มีความจำเป็น เนื่องจากไม่เกิดปัญหา DNB การออกแบบการถ่ายเทความร้อนจึงใช้พื้นฐานของการไหลของก๊าซเป็นหลัก ซึ่งมีค่าการนำความร้อนต่ำ nucleate boiling ในท่อ boiler มาก


 Superheaters

► Convection Superheaters

 

►  Radiant Superheaters



กราฟการตอบสนองของอุณหภูมิขาออกของซูเปอร์ฮีทเตอร์แบบ
พาความร้อน
, แผ่รังสี, และแบบผสม
เนื่องจากท่อต้องรับอุณหภูมิ ความดัน และความเค้นจากความร้อนสูงมาก จึงต้องเลือกใช้วัสดุที่สร้างอย่างรอบคอบ ที่อุณหภูมิต่ำกว่า 850OF ใช้เหล็กคาร์บอนก็เพียงพอ แต่ซูเปอร์ฮีทเตอร์และรีฮีทเตอร์ ในปัจจุบันทำงานที่ประมาณ 1000OF จึงต้องเลือกใช้เหล็กกล้าอัลลอย เพื่อความแข็งแรงและทนต่อการกัดกร่อน


ผังแสดงซูเปอร์ฮีทเตอร์และรีฮีทเตอร์แบบ (a) ห้อย (b) กลับ (c) แนวนอน
 

 
 การจัดวาง ซูเปอร์ฮีทเตอร์, รีฮีทเตอร์, อีโคโนไมเซอร์ และเครื่องอุ่นอากาศ ในเครื่องกำเนิดไอน้ำแบบเตาไซโคลน

 
 

ขอขอบคุณทุกๆแหล่งที่มาของข้อมูล
http://www.me.psu.ac.th/~smarn/pplant/P3a.htm
http://industrial.uru.ac.th/pdf_book_aj/

  

 



นายเอ็นจิเนียร์ขอสงวนสิทธิ์รับรองความถูกต้อง โปรดใช้วิจารณญาณในการรับข่าวสารข้อมูล


 ลิงค์ช่องยูทุปของ 9engineer.com => คลิก=> technology talk
 
ขอกำลังใจจากเพื่อนๆสมาชิกช่วยสนับสนุนด้วยการกดซับสไคร์ กดกระดิ่งติดตาม กดไลค์และกดแชร์ด้วยครับ

6 June 2023
:: MEMBER LOGIN
E-mail Account
Password
:: OUR SPONSORS