Top 50 Popular Supplier
1 ร้านหนังสือออนไลน์ 621,305
2 การเพิ่มเว็บลงใน e-directory 59,324
3 E&L INTERNATIONAL CO., LTD. 56,869
4 T.N. METAL WORKS Co., Ltd. 54,156
5 เคอีบี (KEB ) ประเทศไทย 49,429
6 ฟิลิปส์อิเล็กทรอนิกส์ (ประเทศไทย) จำกัด 39,468
7 บ.ไทนามิคส์ จำกัด 35,860
8 สถาบันไทยเยอรมัน 34,584
9 Industrial Provision co., ltd 32,029
10 ลาดกระบัง ทูลส์ แอนด์ ดาย จำกัด 31,366
11 Infinity Engineering System Co.,Ltd 28,957
12 สยาม เอลมาเทค (siam elmatech) 27,489
13 ไทยเทคนิค อีเล็คตริค จำกัด 26,642
14 ฟอร์จูน เมคคานิค แอนด์ ซัพพลาย 25,845
15 เอเชียเทค พาวเวอร์คอนโทรล จำกัด 25,192
16 บริษัท เวิลด์ ไฮดรอลิคส์ จำกัด 24,920
17 โปรไดร์ฟ ซิสเต็ม จำกัด 22,409
18 ซี.เค.แอล.โพลีเทค เอ็นจิเนียริ่ง 21,893
19 ธรรมคุณ ออโตเมชั่น 20,176
20 P.D.S. Automation co.,ltd 18,689
21 AVERA CO., LTD. 18,098
22 เลิศบุศย์ 17,746
23 ห้างหุ้นส่วนสามัญ เอ-รีไซเคิล กรุ๊ป 16,514
24 เทคนิคอล พรีซิชั่น แมชชีนนิ่ง 16,306
25 แมชชีนเทค 15,982
26 Electronics Source Co.,Ltd. 15,695
27 มากิโน (ประเทศไทย) 15,470
28 ทรอนิคส์เซิร์ฟ จำกัด 15,086
29 Pro-face South-East Asia Pacific Co., Ltd. 15,052
30 อีดีเอ อินเตอร์เนชั่นเนล จำกัด 14,892
31 SAMWHA THAILAND 14,402
32 โครงการพัฒนาอุตสาหกรรมแม่พิมพ์ 14,262
33 ดีไซน์ โธร แมนูแฟคเจอริ่ง 13,932
34 IWASHITA INSTRUMENTS (THAILAND) LTD. 13,927
35 CHEMTEC AUTOMATION CO.,LTD. 13,815
36 Intelligent Mechantronics System (Thailand) 13,759
37 เอส.เอส.บี สยาม จำกัด 13,749
38 I-Mechanics Co.,Ltd. 13,678
39 ศรีทองเนมเพลท จำกัด 13,368
40 Systems integrator 13,329
41 Advanced Technology Equipment 13,023
42 วอยก้า จำกัด 12,982
43 เอ็นเทค แอสโซซิเอท จำกัด 12,936
44 ดาต้า เอ็นทรี่ กรุ๊ป จำกัด 12,805
45 Autodesk Asia Pte Co., Ltd. 12,778
46 มิตราคม (Mitracom) 12,685
47 SUNAI GROUP CO.,LTD. 12,674
48 Pan Drives Co.,Ltd 12,637
49 K.P. Trading Group Company Limited 12,586
50 CHENGGANG Electrical Engineering 12,482
17/03/2561 19:15 น. , อ่าน 16,576 ครั้ง
Bookmark and Share
หลักล่อฟ้าและการติดตั้ง
โดย : Admin

วิธีการติดตั้งหลักล่อฟ้าสำหรับอาคารประเภทต่างๆ            

ได้แนวความคิดมาจากหลักการป้องกันฟ้าผ่าของเบนจามินแฟรงคลิน นั่นคือการติดตั้งแท่งโลหะที่จุดสูงสุดของอาคาร เพื่อดึงดูดและนำฟ้าผ่าให้ไหลลงสู่พื้นดินโดยปราศจากอันตราย แต่แท่งดังกล่าวสามารถป้องกันอันตรายได้ ในลักษณะของมุมกรวยที่รัศมีฐานเท่ากับความสูงของแท่งโลหะเท่านั้นจึงเหมาะสมสำหรับอาคารที่มียอดแหลม และมีพื้นที่ไม่ใหญ่โตมากนักและใช้ไม่ค่อยได้ผลสำหรับอาคารที่มีลักษณะแบนราบ และมีพื้นที่ใหญ่โต ต่อมาไมเคิลฟาราเดย์ ได้พัฒนาวิธี การป้องกันโดยเพิ่มจำนวนเสาล่อฟ้าและสายตัวนำ ให้ครอบคลุมบริเวณที่จะป้องกันมากขึ้น มีลักษณะเหมือนกรงเรียกว่า กรงฟาราเดย์ (Faraday cage) และได้กลายเป็นหลักการป้องกันฟ้าผ่าที่นิยมมาจนปัจจุบัน




1. เสาล่อฟ้า (air terminal)

อาจเป็นเสาโลหะหรือสายตัวนำติดตั้งไว้บนจุดสูงสุดของอาคารหรือสิ่งที่ต้องการป้องกัน และนิยมทำปลายให้แหลม เพื่อให้ความเครียดสนามไฟฟ้า ณ จุดนั้นมีค่าสูงกว่าที่อื่นในบริเวณใกล้เคียงโดยทำหน้าที่ล่อ ให้ฟ้าผ่าลงมา หากเกิดฟ้าผ่าขึ้นในย่านนั้น เสาล่อฟ้าที่ได้รับความนิยมมี3 ชนิดคือ ทองแดง อลูมิเนียม เหล็กชุบสังกะสี โดยที่ทองแดงจะมีค่าความต้านทานจำเพาะต่ำแต่ไม่สามารถทนการกัดกร่อนในสภาพที่เป็นกรดหรือด่างได้ ส่วนอลูมิเนียมมีค่าความต้านทานสูงกว่าทองแดงและมีราคาถูกกว่า แต่ใช้ได้เฉพาะส่วนที่อยู่ในอากาศเท่านั้น ไม่สามารถใช้ในดินได้และมีข้อจำกัดหลายประการเช่น ไม่สามารถใช้ในหลังคาที่ปูด้วยทองแดงและยังต้องมีตัวต่อ ที่จะเปลี่ยนจากอลูมิเนียมไปเป็นทองแดงสำหรับต่อสายลงดิน ส่วนเหล็กชุบสังกะสีสามารถทนการกัดกร่อนได้ดี แต่มีความต้านทานจำเพาะสูงกว่าทองแดงแต่ราคาถูกและทนอุณหภูมิได้สูงกว่าแต่ส่วนใหญ่จะใช้ทองแดง เพราะนำไฟฟ้าดีกว่า บางชนิดมีปลายแหลมเป็นแฉก ซึ่งจะเพิ่มการแตกตัวของอากาศได้ในบริเวณรอบปลายแหลมที่มีหลาย ๆ อัน ปกติเสาล่อฟ้าต้องติดตั้งในจุดสูงสุดของอาคาร ถ้าเสามีความสูงจากฐานถึงปลายยอดไม่น้อยกว่า 10 นิ้วเหนือวัตถุ ที่ต้องการป้องกัน ให้วางเสาล่อฟ้าดังกล่าวเป็นระยะห่างกันทุกๆ 20 ฟุต แต่ถ้ามีระยะห่างเพิ่มเป็น 25 ฟุต ความสูงของเสา ต้องไม่น้อยกว่า 2 ฟุตถ้าสูงกว่า 2 ฟุตต้องยึดเสาด้านข้างเพิ่มเติมที่ระยะประมาณครึ่งหนึ่งของความสูงเสาล่อฟ้า


จำนวนและการติดตั้งเสาล่อฟ้า สามารถแบ่งออกได้ 3 กรณีคือ


ก. การติดตั้งกับหลังคาลาดเอียง
จะต้องติดตั้งเสาล่อฟ้าที่แถวแรกของสันหลังคา โดยมีระยะห่างของเสาแต่ละต้นไม่เกิน 20 ฟุต ถ้าเสามีความสูง 10 นิ้ว แต่ถ้าเสาล่อฟ้ามีความสูง 24 นิ้ว ให้วางห่างกันได้ไม่เกิน 25 ฟุต และเสาดังกล่าวต้องอยู่ห่างจากริมหลังคาไม่เกิน 2 ฟุต หลังจากวางเสาล่อฟ้าแถวแรกที่สันหลังคาได้แล้ว ต่อไปให้พิจารณาที่ส่วนปลายชายคาของหลังคา ว่าอยู่ภายในรัศมีป้องกัน ของเสาล่อฟ้าที่สันหลังคาหรือไม่ สำหรับอาคารที่สูงไม่เกิน 50 ฟุตเหนือพื้นดินจะมีรัศมีการป้องกัน ของเสาล่อฟ้าที่สันหลังคา ในอัตราส่วน 2 : 1 ถ้าอาคารสูงเกินกว่า 50 ฟุต อัตราส่วนการป้องกันของเสาล่อฟ้าจะเป็น 1:1

ข. กรณีของหลังคาแบนราบหรือหลังคาที่มีความลาดเอียงน้อย
NEC ได้กำหนดให้หลังคาที่มีความลาดเอียงน้อยคือ หลังคาที่มีช่วงความกว้างไม่เกิน 40 ฟุต และมีความลาดเอียงของหลังคา 1 ใน 8 หรือน้อยกว่านั้น ถ้าหลังคากว้างกว่า 40 ฟุต จะต้องมีความลาดเอียงน้อยกว่า 1 ใน 4 กรณีนี้ให้ถือเอาการติดตั้งที่ขอบ หลังคาเป็นหลัก โดยมีระยะห่างระหว่างเสาล่อฟ้าแต่ละต้นเป็น 6 หรือ 7.6 เมตร และตัวเสาล่อฟ้าต้องอยู่ห่างจากขอบสุด หรือสันหลังคาไม่เกิน 2 ฟุต ถ้าหลังคามีความกว้างเกินกว้างกว่า 50 ฟุต ต้องมีแถวของเสาล่อฟ้าเพิ่มเติมที่ระยะไม่เกิน 50 ฟุต

ค. หลังคาที่มีหลายชั้น
การป้องกันฟ้าผ่าทำได้โดยการวางแถวของเสาล่อฟ้าตามกฏเกณฑ์ของหลังคาแต่ละประเภท หลังจากนั้นก็กำหนดรัศมีป้องกัน ของเสาล่อฟ้าในส่วนที่ป้องกันหลังคาสูงสุด โดยใช้อัตราส่วนป้องกัน 1:1 หรือ 2:1 ตามความสูงของอาคาร นอกจากนั้นให้ติดตั้ง เสาล่อฟ้าเพิ่มเติมในส่วนที่รัศมีป้องกันของเสาล่อฟ้าบนหลังคาที่สูงที่สุด ไม่สามารถป้องกันได้ การเดินสายเชื่อมต่อระหว่าง เสาล่อฟ้าต้องเชื่อมเสาล่อฟ้าทุกๆ จุดโดยเดินสายเป็นวงรอบและเสาล่อฟ้าแต่ละต้นควรมีทางสำหรับกระแสไหลลงดินได้ 2 ทาง

2. สายนำลงดิน (down conductor)
กรณีของอาคารสูงต้องเชื่อมต่อกันทุกระยะ 30 เมตร รอบอาคารและจำเป็นต้องเดินสายให้เป็นเส้นตรงมากที่สุด ให้หลีกเลี่ยงการโค้งงอในกรณีที่จำเป็นอนุโลมให้โค้งงอได้ แต่ต้องไม่น้อยกว่า 90 องศาและมีรัศมีไม่น้อยกว่า 8 นิ้ว
การเดินสายนอกอาคารควรหลีกเลี่ยงการเดินสายโค้งงอไปตามรูปทรงของอาคาร โดยเฉพาะตึกที่ชั้นบนยื่นออกไปมากกว่าชั้นล่าง จะมีโอกาสเกิดการสปาร์กด้านข้างเมื่อเกิดฟ้าผ่าหรือเกิด break down ของอาคารในช่วงที่สายพาดผ่าน นอกจากนี้ยังต้องระวัง ไม่เดินสายใกล้กรอบประตูหน้าต่างที่เป็นโลหะ บางครั้งอาจใช้โครงสร้างเหล็กของอาคารเป็นตัวนำฟ้าผ่าลงดินได้ แต่เหล็กเส้นดังกล่าวต้องต่อถึงกันอย่างแน่นสนิทเพื่อให้กระแสไหลได้สะดวก โดยปกติขนาดสายตัวนำลงดิน มักใช้สายทองแดงเปลือย ขนาด 35-50 ตารางมิลลิเมตร

3. รากสายดิน (earth electrode)
เป็นโลหะที่ฝังลงในดินเพื่อช่วยให้ความต้านทานของระบบสายดินมีค่าต่ำสุด ซึ่งอาจใช้รากสายดินหลายชุด หรือฝังลึกลงไปในดินมากขึ้น ทั้งนี้ขึ้นอยู่กับความต้านทานจำเพาะของดินและขนาดสิ่งก่อสร้างที่ต้องการติดตั้งระบบล่อฟ้า โดยคำนึงถึงหลัก 2 ประการคือ ความต้านทานของระบบสายดินต้องไม่ทำให้เกิดการสปาร์กด้านข้างภายในอาคาร และต้องไม่ทำให้เกิดความต่างศักย์ ระหว่างช่วงก้าว (ประมาณ 1 เมตร) บนพื้น


การฝังรากสายดินนิยมใช้แท่งเหล็กเคลือบทองแดง (copper clad steel) ขนาดเส้นผ่าศูนย์กลางไม่น้อยกว่า 1/2 นิ้ว ยาว 8 ฟุต ตอกลงไปในดินและควรอยู่ห่างจากฐานอาคารไม่น้อยกว่า 2 ฟุต การติดตั้งจะขึ้นอยู่กับสภาพดินคือ ถ้าดินชื้นรากสายดิน อยู่ลึกลงไปไม่น้อยกว่า 10 ฟุต แล้วจึงถมดินอัดให้แน่น

 

ส่วนบริเวณที่มีกรวดทรายปนอยู่ในดิน ต้องเพิ่มจำนวนรากสายดินอาจเป็น 2 หรือมากกว่าโดยวางห่างกัน 3 เมตร เป็นรูปสามเหลี่ยมด้านเท่า และปักลึกลงไปในดิน 10 ฟุตเช่นกัน กรณีที่มีชั้นหินอยู่ใกล้ผิวดินซึ่งทำให้ปักรากสายดินไม่สะดวก ให้ขุดเป็นรางยางไม่น้อยกว่า 12 ฟุต ลึกตั้งแต่ 1-2 ฟุต แต่ถ้าชั้นดินข้างบนเป็นทรายหรือมีกรวดปนดิน รางต้องมีความยาวไม่น้อยกว่า 24 ฟุต และลึกไม่น้อยกว่า 2 ฟุต แต่ถ้าไม่สามารถขุดรางตามแนวนอนดังกล่าวได้ ให้วางสายตัวนำในระดับความลึกดังกล่าว แล้วต่อกับแผ่นทองแดงที่มีความหนาอย่างน้อย 0.8 มิลลิเมตร และมีพื้นที่ผิวไม่น้อยกว่า 2 ตารางฟุต โดยปลายสายต้องอยู่ห่างจากตัวอาคารไม่น้อยกว่า 2 ฟุต
ถ้าชั้นดินมีความลึกน้อยกว่า 1 ฟุต ต้องใช้ตัวนำวางในรางเป็นวงรอบอาคารและเพิ่มแผ่นทองแดงขนาด 9 ตารางฟุต หนา 0.8 มิลลิเมตร ที่มุมอาคารและกลบด้วยดินร่วน เพื่อให้รับความชื้นจากฝนได้ ค่าความต้านทานของรากสายดินที่ติดตั้งแล้วควรอยู่ในช่วง 2-5 โอห์ม นอกจากนี้สายดินของระบบไฟฟ้า โทรศัพท์ หรือท่อโลหะอื่น ๆ ที่ฝังดิน ควรมีการเชื่อมโยงเข้ากับระบบสายล่อฟ้าเพื่อลดความต่างศักย์ระหว่างตัวนำประเภทต่าง ๆ ที่ต่อลงไปในดิน ถ้าความต้านทานของระบบสายดินมีค่าสูงและแก้ไขโดยวิธีข้างต้นไม่สำเร็จ ก็อาจใช้เกลือเติมลงไปในดินบริเวณที่มีการปักรากลายดินแต่ควรดำเนินการเป็นครั้งสุดท้าย เนื่องจากรากสายดินจะผุกร่อนเร็วเกินไป และการเติมเกลือในปริมาณที่ไม่เหมาะสม ก็อาจทำให้ความต้านทานดินเพิ่มสูงขึ้น

4. การเชื่อมต่อสายตัวนำกับเสาล่อฟ้า
     ก. ระบบเชื่อมต้องสามารถรับกระแสฟ้าผ่าได้เพียงพอ
     ข. ต้องแข็งแรงไม่แตกหัก หรือยึดตัวเนื่องจากแรงต่าง ๆ
     ค. ทนทานต่อการกัดกร่อนเป็นเวลานาน

วิธีการที่นิยมอย่างมากในการเชื่อมต่อคือการใช้ความร้อนจากปฏิกิริยาทางเคมี เรียกว่า exothermic welding หรือ thermo weld โดยเป็นการเชื่อมทองแดงเข้ากับทองแดงหรือทองแดงเข้ากับเหล็กขบวนการความร้อนจะเกิดจากปฏิกิริยา ของผงทองแดงออกไซด์ กับอลูมิเนียมในเบ้ากราไฟต์ เมื่อเกิดการลุกไหม้แล้วจะทำให้เกิดอลูเนียมออกไซด์โดยอยู่ในรูปของ slag การทำงานจะเริ่มต้นจากเบ้ากราไฟต์โดยตอนบนของเบ้าใช้บรรจุโลหะผงและผงเคมีสำหรับเริ่มปฏิกิริยาและมีแผ่นโลหะบางๆ วางไว้ที่ก้นกระบอกเพื่อกันไม่ให้ผงโลหะไหลลงมาตอนล่างของเบ้า ซึ่งเป็นส่วนที่วางตัวนำที่ต้องการต่อเข้าด้วยกัน เมื่อจุดไฟเริ่มปฏิกิริยาผงโลหะจะเกิดการหลอมเหลวและหลอมทองแดงพร้อมทั้งแผ่นโลหะที่รองด้านล่างทำให้ทองแดงเหลว ไหลลงมาข้างล่างได้และเชื่อมต่อตัวนำเข้าด้วยกัน

 
ที่มา: NECTEC's Web base learning

นายเอ็นจิเนียร์ขอสงวนสิทธิ์รับรองความถูกต้อง โปรดใช้วิจารณญาณในการรับข่าวสารข้อมูล

 

 

12 December 2019
:: MEMBER LOGIN
E-mail Account
Password
:: OUR SPONSORS
สหพร
PLC
mitsubishi
tnmetalworks
tds
rain
rian