ความดันและหัวน้ำหรือเฮดของปั๊ม (Pressure & head)
โดย : Admin

 ความดันและเฮด

    ในการศึกษาเกี่ยวกับการทำงานของปั๊ม จำเป็นต้องทราบทฤษฎีเบื้องต้นเกี่ยวกับของเหลว ความดัน และหัวน้ำหรือเฮดของปั๊ม ดังนี้
 

1. ความดันของบรรยากาศ (Atmospheric Pressure) :   คืออัตราส่วนระหว่างน้ำหนักของบรรยากาศต่อหนึ่งหน่วยพื้นที่บนผิวโลกแต่เนื่องจากว่าลักษณะการวัดความดันมี 2 แบบ ตามภาพ

 
ภาพแสดงความดันบรรยากาศ

 

          
              จากภาพความดันของบรรยากาศมี่ค่าศูนย์อย่างแท้จริงหรือไม่มีความดันเลยซึ่งเกิดขึ้นได้โดยการดูดอากาศออกหมดจนเป็นสูญญากาศที่แท้จริงเรียกว่า ความดันศูนย์สมบูรณ์ (Absolute (Zero Pressure) ค่าความดันใด ๆ ที่วัดจากค่าความดันพื้นฐานนี้เรียกว่า ความดันสมบูรณ์ (Absolute Pressure, Pabs) รวมทั้งความดันของบรรยากาศซึ่งมีค่าประมาณเท่ากับ 101.325 กิโลนิวตัน/ตารางเมตร (kN/m2) หรือ 14.7 ปอนด์ต่อตารางนิ้วก็เป็นความดันสมบูรณ์ด้วย แต่เนื่องจากว่าอุปกรณ์ที่ใช้วัดเรียกว่า บาโรมิเตอร์ (Barometer) ค่าความกดดันของบรรยากาศที่วัดได้จึงเรียกว่า ความดันจากบาโรมิเตอร์ (Barometer Pressure, Pb)
 

          อุปกรณ์ที่ใช้วัดความดันโดยทั่ว ๆ ไปเป็นเครื่องมือสำหรับวัดค่าที่แตกต่างไปจากความกดดันของบรรยากาศ ค่าที่วัดได้เรียก ความดันจากเกจ (Gauge Pressure, Pb) ซึ่งอาจมีค่าได้ทั้งบวกและลบ จากภาพจะเห็นได้ว่าสามารถเปลี่ยนความดันจากเกจให้เป็นความดันสมบูรณ์ได้โดย

 
                   ความดันสมบูรณ์ = ความดันจากบาโรมิเตอร์ + ความดันจากเกจ
                                   Pabs = Pb + Pg
                   ค่าความกดดันของบรรยากาศหรือความกดดันจากบาโรมิเตอร์
                                  Pb = 1013 – 0.1055 EL


 
          ในเมื่อ Pb เป็นความดันของบรรยากาศมีหน่วยเป็นมิลลิบาร์หนึ่งมิลลิบาร์ เท่ากับ 0.0145 ปอนด์/ตารางนิ้ว หรือคิดเป็นความสูงของแท่งน้ำที่ 4 C ได้เท่ากับ 0.010197 เมตร และ EL เป็นระดับความสูงของพื้นผิวที่ต้องการทราบความกดดันเหนือระดับน้ำทะเลปานกลางมีหน่วยเป็นเมตร

 
        ในการคำนวณเกี่ยวกับการติดตั้งปั๊ม ค่าความกดดันของบรรยากาศที่ใช้มีหน่วยเป็นความสูงของแท่งน้ำหรือเฮดเป็นเมตรค่าดังกล่าวจะคำนวณได้จากสมการ
 
                                  Hp= 10.33 – 0.00108EL

                              โดย Hp เป็นความกดดันบรรยากาศเทียบให้เป็นความสูงของแท่งน้ำที่ 4 C มีหน่วยเป็นเมตร



 
 2. เฮดความดัน (Pressure Head, Hp)
           ค่าความดันนอกจากจะบอกเป็นแรงต่อหนึ่งหน่วยพื้นที่ เช่น นิวตันต่อตารางเมตร (N/m2) หรือปอนด์ต่อตารานิ้ว (psi) แล้ว ถ้าเป็นความดันของของเหลวก็มักจะนิยมบอกเป็นแท่งความสูงของของเหลวที่จะก่อให้เกิดความดันที่กำหนดบนผิวหน้าซึ่งรองรับแท่งของเหลวนั้น ความดันซึ่งบอกเป็นแท่งวามสูงของของเหลวนี้เรียกว่า เฮดความดัน (Pressure Head)
 



 

 

   3. เฮดความร็ว (Velocity Head, Hv) : ของเหลวที่ไหลในท่อหรือทางน้ำเปิดด้วยความเร็วใด ๆ นั้นมีพลังงานจลน์อยู่พลังงานในส่วนนี้เมื่อบอกในรูปของเฮดคือ
 
                            
 
             เฮดความเร็วอาจให้กำจัดความได้อีกอย่างหนึ่งว่า เป็นความสูงที่ของเหลวตกลงมาด้วย แรงดึงดูดของโลกจนได้ความเร็วเท่ากับความร็วในการไหลของของเหลวนั้น
 
 
   4. เฮดสถิตย์ (Static Head, Hs)
      ในการทำงานของปั๊มโดยทั่ว ๆ ไปของเหลวจะถูกเพิ่มพลังงานเพื่อให้มันไหลจากจุดหนึ่งไปยังอีกจุดหนึ่งซึ่งอยู่สูงกว่า ความดันซึ่งคิดเป็นแท่งความสูงของของเหลวที่กระทำต่อศูนย์กลางของปั๊มทั้งทางด้านดูดและด้านจ่ายในขณะที่ความเร็วของการไหลผ่านระบบเป็นศูนย์เรียกว่า เฮดสถิตย์ (Static Head)
 

ภาพแสดงเฮดสถิตย์

 

    ตามภาพระยะทางในแนวดิ่งที่บอกเป็นแท่งความสูงของของเหลว หรือเฮดจากศูนย์กลางของปั๊มถึงปลายของท่อจ่ายเรียกว่า เฮดสถิตย์ด้านจ่าย (Static Discharge Head)
 
      ระยะจากจุดศูนย์กลางของปั๊มถึงระดับผิวของของเหลวที่ปลายของท่อดูดซึ่งอยู่สูงกว่า  เรียกว่า เฮดสถิตย์ด้านดูด (Static Suction Head) ถ้าผิวของของเหลวอยู่ต่ำกว่า (ภาพที่ a) และความดันที่ศูนย์กลางของปั๊มจะมีค่าเป็นลบ ในกรณีนี้จะเรียกว่า ระยะดูดยก (Static Suction Lift) แทน
เฮดรวมสถิตย์รวม (Total Static Head) ก็คือผลต่างทางพีชคณิตของเฮดสถิตย์ด้านจ่าย (Static Discharge Head) กับเฮดสถิตย์ด้านดูด (Static Suction Head) ค่าดังกล่าวนี้เป็นเฮดต่ำสุดที่ปั๊มจะต้องเพิ่มให้แก่ของเหลวก่อนที่จะมีการไหลเกิดขึ้น
 
 
 
5. เฮดความฝืด (Friction Head, Hf)
         ในขณะที่ของเหลวไหลผ่านระบบท่อทั้งด้านดูดและจ่ายพลังงานหรือเฮดในการไหลส่วนหนึ่งจะสูญเสียไปเนาองจากความฝืดระหว่างของเหลวกับผนังของท่อและส่วนประกอบต่าง ๆ ซึ่งเราเรียกว่า เฮดความฝืด (Friction Head)
 
        ในระบบสูบน้ำโดยทั่ว ๆ ไป การเสียเฮดเนื่องจากความฝืดอาจเกิดขึ้นได้หลายจุดดังภาพข้างล่าง
 
การเสียเฮดทั้งหมดนี้ขึ้นอยู่กับอัตราการไหลผ่านระบบท่อซึ่งมีค่าเพิ่มขึ้นเมื่ออัตราการไหลเพิ่มขึ้น ดังนั้นขณะที่ปั๊มกำลังทำงาน ระยะดูดยกรวมที่เกิดขึ้นจริงจะเท่ากับระยะดูดยก (Static Suction Lift) รวมกับเฮดความฝืดทางด้านดูดทั้งหมดตั้งแต่ จุดที่ 1 ถึง จุด 5 ในกรณีที่ของเหลวทางด้านดูดอยู่สูงกว่าศูนย์กลางของปั๊ม เฮดด้านดูดรวม (Total Static Head) ที่เกิดขึ้นจริงจึงเท่ากับเฮดสถิตย์ด้านดูด (Static Suction Head)

 
         สำหรับทางด้านจ่ายก็เช่นเดียวกัน คืออาจจะรวมการเสียเฮดที่จุดที่ 6 ถึง 9 เข้าด้วยกันเป็นเฮดความฝืด และเฮดรวมด้านจ่าย (Total Discharge Head) ที่เกิดขึ้นจริงในขณะที่ปั๊มการทำงานจะเท่ากับเฮดสถิตย์ด้านจ่ายรวมกับเฮดความฝืดทั้งหมดทางด้านจ่าย
 
ภาพแสดงการสูญเสียเฮด
 
 

         
          จุดที่ 1 เป็นการเสียเฮดความเร็วเนื่องจากการไหลเข้าท่อ (Entrance loss) ซึ่งขึ้นอยู่กับรูปทรงและอุปกรณ์ที่ปลายท่อดูด
          จุดที่ 2 เป็นการเสียเฮดเนื่องจากความฝืดระหว่างของเหลวกับผนังท่อ
          จุดที่ 3 เป็นการเสียเฮดเนื่องจากมีการเปลี่ยนทิศทางการไหล
          จุดที่ 4 เป็นการเสียเฮดในเส้นท่อเหมือนจุดที่ 2
          จุดที่ 5 เป็นการเสียเฮดที่อุปกรณ์ทางด้านดูดของปั๊มลบด้วยเฮดความฝืดทั้งหมดทางด้านดูด
 

               
สำหรับทางด้านจ่ายก็เช่นเดียวกัน คืออาจจะรวมการเสียเฮดที่จุดที่ 6 ถึง 9 เข้าด้วยกันเป็นเฮดความฝืด และเฮดรวมด้านจ่าย (Total Discharge Head) ที่เกิดขึ้นจริงในขณะที่ปั๊มการทำงานจะเท่ากับเฮดสถิตย์ด้านจ่ายรวมกับเฮดความฝืดทั้งหมดทางด้านจ่าย


 
6. เฮดรวม (Total Head, Hr)
    เฮดรวมของน้ำ ณ จุดใดจุดหนึ่ง ก็คือพลังงานทั้งหมดของน้ำที่บอกในรูปของเฮดของน้ำ ณ จุดนั้น ๆ
 


 
         ความแตกต่างระหว่างเฮดรวมของ 2 จุด ในกรณีที่ไม่มีการเพิ่มพลังงานให้แก่ของเหลวก็คือเฮดความฝืดระหว่าง 2 จุดนั้น
ฉะนั้นเฮดควมฝืดระหว่างจุดที่ 1 และจุดที่ 2
 
                            
 
 
        
 
 
 
 
 
ขอบคูณทุกๆแหล่งที่มาของข้อมูล

 

เนื้อหาโดย: 9engineer.com (https://9engineer.com/)