ทรานซิสเตอร์ Transistor
โดย : Admin

ทรานซิสเตอร์ (Transistor) คืออะไร?
 

รูปร่างของทรานซิสเตอร์มีหลายรูปแบบ ซึ่งแต่ละแบบก็มีชื่อเรียกต่างกันออกไป

 

ทรานซิสเตอร์เป็นอุปกรณ์อิเล็กทรอนิกส์ที่สำคัญ ที่ทำหน้าที่ในการคอนโทรลการไหลของกระแสไฟฟ้า (ทั้งยอมให้ไหล และบล็อคไม่ให้กระแสไหลผ่าน) ซึ่งคล้ายๆกับไดโอด แต่ทรานซิสเตอร์สามารถทำอะไรได้มากกว่า เพราะนอกจากจะคอนโทรลทิศทางการไหลได้แล้ว ยังสามารถควบคุมปริมาณกระแสไฟฟ้าได้ด้วย, ความสามารถดังกล่าวเกิดขึ้นได้เพราะสารกึ่งตัวนำภายในทรานซิสเตอร์เอง.
 


 

โครงสร้างและสัญลักษณ์ของทรานซิสเตอร์
 
โครงสร้างของทรานซิสเตอร์จะประกอบด้วยสารกึ่งตัวนำ P และ N มาต่อกัน 3 ตัว มีรอยต่อ 2 รอยต่อ และประกอบด้วยขา 3 ขา  คือ ขาเบส (base,B)  ขาอิมิตเตอร์ (Emitter,E) และขาคอลเลคเตอร์ (Collector,C) 

ทรานซิสเตอร์แบ่งตามโครงสร้างได้ 2 ชนิด คือ NPN และ PNP  และแบ่งตามสารได้สองชนิดเช่นเดียวกับไดโอด คือแบบเยอรมันเนียม และ ซิลิคอน

 

ทรานซิสเตอร์ชนิด NPN - โครงสร้างแบบ NPN สังเกตว่าสัญลักษณ์ทรานซิสเตอร์หัวลูกศรจะพุ่งออก
ทรานซิสเตอร์ชนิด PNP - โครงสร้างแบบ PNP สังเกตว่าสัญลักษณ์ทรานซิสเตอร์หัวลูกศรจะพุ่งเข้า

 

หลักการทำงานของทรานซิสเตอร์ 
 
ทรานซิสเตอร์มีหน้าที่ในการควบคุมหรือคอนโทรลทิศทางทางและปริมาณกระแสไฟฟ้า ดังนั้นหลักการที่สำคัญหรือจุดประสงค์หลักเลยก็คือ  "การใช้กระแสไฟฟ้าน้อยๆ ควบคุมกระแสไฟฟ้ามากๆ"  ซึ่งหมายถึง เมื่อมีปริมาณกระแสไฟฟ้าเพียงเล็กน้อยที่กระตุ้นที่ขา Base ,ก็จะสามารถคอนโทรลปริมาณกระแสไฟฟ้าที่มากกว่าหลายเท่าตัว   โดยขึ้นอยู่ค่ากำลังขยายหรือที่เรียกว่า Current Gain หรือ HFE หรือ β นั่นเอง

 

การทำงานของ NPN Transistor

เมื่อมีกระแสไฟฟ้าเพียงเล็กน้อยที่ขา B, ทรานซิสเตอร์ก็จะอยู่ในสภาวะทำงาน และจะยอมให้กระแสไฟฟ้าที่มากกว่าหลายเท่าไหลผ่านขา C ไปยังขา E

แต่ในทางตรงกันข้าม ถ้าไม่มีกระแสไฟฟ้าที่ขา B เลย ทรานซิสเตอร์จะอยู่ในสภาวะ Cut-Off ซึ่งจะบล็อคไม่ให้กระไสไฟฟ้าไหลจากขา C ไป E ได้  (แบบ NPN นี้ ขา E ทำหน้าที่เป็นกราวด์)

 

การทำงานของ PNP Transistor

ทรานซิสเตอร์แบบนี้จะทำงานต่างกับแบบ NPN คือ โดยขา C จะทำหน้าที่เป็นกราวด์แทน  เมื่อมีกระแสไฟฟ้าเพียงเล็กน้อยที่ขา B  ทรานซิสเตอร์จะทำการบล็อคไม่ให้กระแสไฟฟ้าไหลผ่านจากขา E ไป C ได้ แต่เมื่อไม่มีกระแสไฟฟ้าที่ขา B เลยหรือกระแสไฟฟ้าติดลบ มันก็จะยอมให้กระแสไฟฟ้าที่มากกว่าไหลผ่านจากขา E ไปขา C

 
การทำงานของทราสซิสเตอร์ เปรียบได้กับวาลว์ที่ถูกควบคุมด้วยสัญญาณไฟฟ้าขาเข้า เพื่อปรับขนาดกระแสไฟฟ้าขาออกที่มาจากแหล่งจ่ายแรงดันดังรูป

 


ภาพแสดงการทำงานของทรานซิสเตอร์เมื่อเปรียบเทียบกับอุปกรณ์ทางเครื่องกล ซึ่งการทำงานจะคล้ายกับวาล์ว

 

การต่อใช้งานทรานซิสเตอร์


จากรูปด้านบนเป็นตัวอย่างการใช้งาน NPN Transistor ซึ่งมีการแยกแหล่งจ่ายออกเป็น 2 แหล่ง คือ Vcc และ Vb และนอกจากนี้ยังมีการแบ่งวงจรออกเป็น 2 ส่วนคือส่วน Input (สีฟ้า) และส่วน Outout (สีชมพู)

• ส่วน Input คือส่วนที่ใช้ในการคอนโทรล ซึ่งเป็นหน้าที่ของขา B เพราะฉะนั้นในส่วนนี้จะใช้ Vb เป็นแหล่งจ่ายให้กับขา B ส่วน Rb คือตัวต้านทานของขา B มีหน้าที่จำกัดไม่ให้กระแสไฟฟ้าไหลผ่านขา B มากเกินไป

• ส่วน Output คือส่วนที่เราจะนำเอา LOAD หรืออุปกรณ์ไฟฟ้าอื่นๆเช่นหลอด LED  มอเตอร์ หรืออุปกรณ์อื่นๆ มาต่อ ดังนั้นในส่วนนี้จะใช้แหล่งจ่าย Vcc ซึ่งเป็นอีกแหล่งจ่ายหนึ่งที่แยกต่างหาก และมักจะมีค่าความต่างศักย์สูงกว่าแหล่งจ่าย Vb  แต่ทั้งนี้กระแสไฟฟ้าจะไหลผ่านขา CE ได้หรือไม่ ก็ขึ้นอยู่กับว่ามีกระแสไฟฟ้ามาคอนโทรลหรือมาทำการควบคุมที่ขา B หรือไม่  และเมื่อมีกระแสไฟฟ้าที่ขา B  ทรานซิสเตอร์ก็จำทำหน้าที่เหมือนวาล์วและยอมให้กระแสไฟฟ้าไหลจาก Vcc ไหลผ่านขา CE และไหลผ่าน LOAD  (ส่วน Rc มีไว้จำกัดกระแสที่จะไหลผ่าน LOAD ไม่ให้มากเกินไป)

• ทั้งส่วน Input และ Output จะใช้กราวน์ร่วมกันที่ขา E (สำหรับแบบ NPN)


Mode การทำงานของทรานซิสเตอร์


• ทรานซิสเตอร์มีโหมดการทำงานอยู่หลัก 4 โหมดได้แก่

1. Active Mode หรือ Active Region หรือโหมดที่มีการทำงาน  ซึ่งในโหมดนี้กระแสไฟฟ้าที่ไหลผ่านขา CE จะเป็นสัดส่วนโดยตรงกับกระแสไฟฟ้าที่ขา B กล่าวคือถ้ายิ่งมีกระแสไฟฟ้ามากระตุ้นที่ขา B มีค่ามากเท่าไหร่ กระแสที่ CE ก็จะมีค่ามากๆๆ  (แต่จะมากไม่ถึงและไม่เกินแหล่งจ่าย Vcc)

2.Cut-Off Mode หรือ Cut-Off Region : คือโหมดที่ไม่มีการทำงานหรือหยุดการทำงาน   ซึ่งในช่วงนี้จะไม่มีกระแสมาที่ขา B  ซึ่งก็จะไม่มีกระแสที่ CE ด้วย ทรานซิสเตอร์จะทำหน้าที่เปรียบเสมือนเป็นสวิตซ์ที่เปิดวงจร

3.Saturation Mode หรือ Saturation Region : คือโหมดอิ่มตัว ซึ่งจะคล้ายๆกับ Active Mode แต่ในโหมดนี้จะมีการจ่ายกระแสไฟฟ้าที่ขา B มากจนอิ่มตัว ซึ่งก็จะส่งผลทำให้ทรานซิสเตอร์ทำหน้าที่เสมือนเป็นสวิตซ์ปิดวงจรแบบสนิทหรือShot Circuit และทำให้ทำกระแสไฟฟ้ไหลผ่านระหว่างขาอ CE ได้มากที่สุด  หรือจะได้รับแรงดันจากแหล่งจ่ายโดยตรง (แรงดัน CE มีค่าเท่ากับแรงดันVcc) ซึ่งเป็นโหมดที่นิยมใช้ เพราะ LOAD จะได้รับกระแสสูงสุด

4.Reverse-Active Mode:  การทำงานในโหมดนี้จะคล้ายกับ Active Mode  แต่ในโหมดนี้ กระแสไฟฟ้าจะไหลจากขา E ไปขา C แทน ซึ่งจะมีใช้ในงานในบางกรณีเท่านั้น


สรุป  Summary

• ทรานซิสเตอร์คืออุปกรณ์ที่ใช้ในการคอรโทรลกระแสไฟฟ้าด้วยกระแสไฟฟ้า (กระแสเล็กควบคุมใหญ่)
• สามารถทำหน้าที่เป็นสวิซต์ที่ควบคุมด้วยไฟฟ้าได้ (ซึ่งเป็นการใช้งานในสวิตซ์โหมดคือ Cut-Off Mode (เปิดวงจร) และ  Saturation Mode (ปิดวงจร)
• สามารถทำหน้าที่เป็นตัวขยายกระแสไฟฟ้าได้ (Amplifier)
• มีอัตราหรือกำลังขยาย เรียกว่า Current Gain เขียนย่อว่าค่า Hfe หรือ β
• ในการทำงานปกติ Ic (กระแสโหลด) จะมากกว่ากว่า Ib (กระที่ใช้ควบคุมการทำงาน)
• Saturation Mode คือโหมดที่ส่วน Output จะเอาแหล่งจ่าย Vcc มาใช้โดยตรงเลย
• ปัจจุบันทรานซิสเตอร์แบบ Silicon ผลิตมากที่สุด และหาซื้อได้ง่าย เนื่องจากราคาถูกเมื่อเทียบกับแบบ Germanium



การประยุกต์ใช้งาน
ขยายสัญญาณ สวิตซิ่ง กำเนิดสัญญาณ เป็นสวิต์ซ์ตัด-ต่อ หรือ ปิด-เปิด วงจรไฟฟ้า เป็นต้น
 


ตัวอย่างการใช้งานในวงจรขยายสัญญาณ
 


ตัวอย่างการใช้งานในวงจรควบคุมมอเตอร์



ตัวอย่างการใช้งานในวงจรควบคุมรีเลย์และควบคุมมอเตอร์





 

ขอขอบคุณ
http://www.rmutphysics.com/
https://commandronestore.com/learning/transistor000.php
http://www.google.com/
 

เนื้อหาโดย: 9engineer.com (http://9engineer.com/)