ฮาร์มอนิกในระบบไฟฟ้า Harmonic in power system |
sakchai@pea.or.th
|
|
|
รูปที่1 ฮาร์มอนิกที่ลำดับต่างๆ |
และผลของฮาร์มอนิกเมื่อรวมกันกับสัญญาณความถี่หลักมูลด้วยทางขนาด (Amplitude) และมุมเฟส (Phase Angle) ทำให้สัญญาณที่เกิดขึ้นมีขนาดเปลี่ยนไปและมีรูปสัญญาณเพี้ยนไปจากสัญญาณคลื่นไซน์ดังรูปที่ 2 |
รูปที่ 2 แสดงถึงฮาร์มอนิกส์ลำดับที่ 3,5 และ 7 ที่มุมต่างๆ ทำให้สัญญาณไซด์มีรูปร่างผิดเพี้ยน |
ในทางคณิตศาสตร์สามารถใช้อนุกรมฟูเรียร์อธิบายคุณลักษณะของฮาร์มอนิกส์ได้ โดยสัญญาณหรือฟังก์ชัน ที่เป็นคาบใดๆ สามารถกระจายให้อยู่ในรูปผลรวมของฟังก์ชันตรีโกณมิติที่ความถี่ต่างๆเป็นฟังก์ชันคาบที่เขียนแทนด้วย f (t ) ดังสมการ |
|
เมื่อ T คือ 1 คาบของสัญญาณและ n คือเลขจำนวนเต็มบวก n คือจำนวนเต็มบวก ในกรณีที่ n = 0 จะเป็นความถี่มูลฐาน ( Fundamental Frequency ) หรือกรณีที่ n มีค่ามากกว่าศูนย์เราเรียกความถี่ นี้ว่าฮาร์มอนิกส์ลำดับที่ n ซึ่งเป็นได้ทั้งลำดับคู่และคี่ และจากรูปที่ 3.1 ข.และรูป. 3.2ข. แสดงถึงความเพี้ยนของสัญญาณ ที่เกิดขึ้นเกิดจากการรวมสัญญาณคลื่นไซน์ที่ความถี่หลักมูลกับคลื่นไซน์ที่เป็นฮาร์มอนิกลำดับที่ 3 ดังรูปที่ 3.1ก. และรูป 3.2ก. ตามลำดับ |
|
|
ค่าความเพี้ยนฮาร์มอนิกรวม มาตรฐาน IEC และ IEEE ใช้ค่าความเพี้ยนฮาร์มอนิกส์ : %THD (Total Harmonic Distrotion ) เป็นค่าบอกระดับ ความเพี้ยนฮาร์มอนิก โดยเทียบจากอัตราส่วนระหว่างค่ารากที่สองของผลบวกกำลังสองของส่วนประกอบฮาร์มอนิก กับค่าของส่วนประกอบความถี่หลักมูลเทียบเป็นร้อยละ ซึ่งจะแยกออกเป็น ค่าความเพี้ยนกระแสฮาร์มอนิกรวม และค่า ความเพี้ยนแรงดันฮาร์มอนิกรวม |
|
Vh (rms) : ค่า rmsของแรงดันฮาร์มอนิกลำดับที่ h Ih (rms) : ค่า rmsของกระแสฮาร์มอนิกลำดับที่ h V1 (rms) : ค่า rmsของแรงดันที่ความถี่หลักมูล I1 (rms) : ค่า rmsของกระแสที่ความถี่หลักมูล |
ความสัมพันธ์ของ %THDI % THDV และ MVASC ในบางครั้งค่าของ %THDI ที่มีค่าสูงๆในระบบไฟฟ้า ระบบไฟฟ้านั้นอาจจะไม่เกิดผลกระทบจากปัญหาฮาร์มอนิกส์ได้เพราะ ค่า %THDI จะเป็นเพียงค่าที่บอกถึงคุณลักษณะของกระแสฮาร์มอนิกส์ของโหลดที่ไม่เป็นเชิงเส้นแต่ละชนิด ( ดูจากสูตรดัง ข้างต้นและตารางที่ 1ประกอบ) แต่ไม่สามารถที่จะบอกถึงความรุนแรงของระดับฮาร์มอนิกส์ได้อย่างสมบูรณ์ ดังในกรณีขนาด พิกัด กำลังของโหลดที่ไม่เป็นเชิงเส้นชนิดหนึ่งตัวเดียวกัน ที่ค่าพิกัดกำลังมากหรือน้อย ค่า %THDIของโหลดดังกล่าวก็จะเป็น ค่าเดียวกัน แต่ระดับความรุนแรงที่ทำให้เกิดปัญหาฮาร์มอนิกส์จะไม่เท่ากัน ดังนั้นถ้าเราจะพิจารณาค่าของ %THDI ควรจะ พิจารณาถึงพิกัดกำลังของโหลดที่ไม่เป็นเชิงเส้นประกอบกันด้วย ซึ่งค่าความเพี้ยนกระแสฮาร์มอนิกจะมีค่าเป็นแอมป์ THDI เราสามารถที่จะพิจารณาถึงระดับความรุนแรงของปัญหาฮาร์มอนิกส์ในระดับหนึ่งได้ ส่วนค่า % THDV นั้นสามารถที่บอกถึง ระดับความรุนแรงของปัญหาฮาร์มอนิกส์ในระบบได้ซึ่งจะต่างจากค่า %THDI โดยจะอธิบายถึงความสัมพันธ์ระหว่างกระแส แรงดันฮาร์มอนิกส์ และค่าพิกัดลังวงจรของระบบ (MVASC) ดังรูปที่ 4 |
|
รูปที่ 4 ความสัมพันธ์ของกระแส แรงดัน และค่าอิมพิแดนซ์ฮาร์มอนิก |
จากรูปที่ 4 ที่แหล่งกำเนิดแรงดันไฟฟ้า จะมีค่าอิมพิแดนซ์ค่าหนึ่งซึ่งขึ้นอยู่กับค่าความถี่ของผู้ใช้ไฟ (50 Hz) เมื่อโหลด ที่ไม่เป็น เชิงเส้นทำงานจะจ่ายกระแสฮาร์มอนิกส์ที่ลำดับต่างๆ (Ih) เข้าสู่ระบบ และผ่านค่าอิมพิแดนซ์ของระบบที่ความถี่ต่างๆ ( Zh )ของระบบทำให้เกิดแรงดันฮาร์มอนิกส์ที่ลำดับต่างๆ (Vh) ทำให้สัญญาณแรงดันในระบบมีขนาดและสัญญาณผิดเพี้ยนไป จากแหล่งจ่ายเดิม ตามสมการ Vh = Ih x Zh และจากสมการทำให้เราสามารถพิจารณาได้ว่าค่าความเพี้ยน แรงดันฮาร์มอนิก ที่เกิดในระบบหนึ่งนั้น(ไม่คำนึงถึงสภาวะปัญหาฮาร์มอนิกส์รีโซแนนซ์) จะขึ้นอยู่กับชนิดและพิกัด กำลังของโหลดที่ไม่เป็นเชิง เส้น (Ih) และค่าพิกัดกำลังลัดวงจรของระบบไฟฟ้า (Zh) นั่นคือ กรณีสถานที่ตั้งของโหลดที่ไม่เป็นเชิงเส้นอยู่ใกล้สถานีไฟฟ้าฯ ซึ่งมีค่าพิกัดลัดวงจรสูงจะมีค่าอิมพิแดนซ์ของระบบต่ำ แต่ถ้าอยู่ไกลสถานีไฟฟ้าฯ ค่าพิกัดลัดวงจรสูงจะมีค่าอิมพิแดนซ์ของระบบ สูง ซึ่งทำให้พิจาณาได้ว่าโรงงานที่มีโหลดไม่เป็นเชิงเส้นที่อยู่ใก้ลสถานีไฟฟ้าฯ จะได้รับผลกระทบจากปัญหาฮาร์มอนิกส์น้อยกว่า โรงงานที่อยู่ไกล สถานีไฟฟ้าฯ ในกรณีที่ระบบภายในโรงงานเหมือนกันดังรูปที่ 5 |
|
รูปที่ 5 แสดงการเปรียบเทียบค่า % THDVของแต่ระบบและสถานที่ตั้ง |
จุดต่อร่วม (Point of Common Coupling , PCC) คือจุดซื้อขายไฟระหว่างการไฟฟ้ากับผู้ใช้ไฟ หรือตำแหน่งที่ทำการตรวจวัดฮาร์มอนิก |
แหล่งกำเนิดฮาร์มอนิก จากที่กล่าวมาโดยภาวะปกติ การไฟฟ้าจะจ่ายแรงดันไฟฟ้าที่เป็นรูปสัญญาณคลื่นไซน์ให้กับโหลด ประเภทต่างๆของผู้ใช้ไฟ แต่ในกรณีในระบบไฟฟ้าที่ผู้ใช้ไฟบางรายมีโหลดประเภทไม่เป็นเชิงเส้น ( Nonlinear Load ) ซึ่งโหลดดังกล่าวเป็นแหล่งกำเนิดฮาร์มอนิก กระแสฮาร์มอนิกนั้นจะไหลเข้าสู่ระบบ ของผู้ใช้ไฟเองและระบบไฟฟ้าข้างเคียง ผลของกระแสฮาร์มอนิกจะทำให้เกิดแรงดันในระบบไฟฟ้าเพี้ยนไป จากรูปคลื่นไซน์ ค่าความเพี้ยนของแรงดันจะมากหรือน้อยนั้น ขึ้นอยู่กับค่าอิมพิแดนซ์ของระบบและขนาด ของกระแสฮาร์มอนิกที่ความถี่ต่างๆ ด้วยผลของกระแสฮาร์มอนิกดังกล่าวไหลเข้าสู่ระบบใกล้เคียง อาจไป รบกวนการทำงานหรือสร้างความเสียหายแก่อุปกรณ์ของผู้ใช้ไฟรายอื่นๆและอุปกรณ์ในระบบของการไฟฟ้าได้ ดังนั้นเรามีความเป็นที่จะต้องทราบว่าโหลดที่อยู่ในอาคารหรือโรงงานอุตสาหกรรมเรานั้น มีโหลดที่เป็นแหล่ง จ่ายฮาร์มอนิกส์หรือไม่ และโหลดประเภทใดเป็นโหลดที่เป็นแหล่งจ่ายฮาร์มอนิกส์ เพื่อที่ทำความใจก่อนที่จะ ทำการแก้ไขและป้องกันปัญหาที่อาจเกิดขึ้นจากฮาร์มอนิกส์ต่อไป เราสามารถแบ่งแหล่งกำเนิดฮาร์มอนิกตาม คุณลักษณะการทำงานของอุปกรณ์ได้ดังต่อไปนี้ |
1. อุปกรณ์อิเลคทรอนิกส์ที่มีทั่วไปในบ้านพัก สำนักงาน ส่วนใหญ่เป็นชนิด 1เฟส 1.1 อุปกรณ์ที่มีการใช้แหล่งจ่ายกำลังแบบสวิทซ์ชิ่ง(SWITCHING MODE POWER SUPPLY : SMPS เช่น เครื่องคอมพิวเตอร์ (Computer) |
|
1.2 บาลาสต์อิเลคทรอนิกส์ ( Electronic Ballast) |
|
2. อุปกรณ์อิเลคทรอนิกส์กำลัง เป็นอุปกรณ์ที่ใช้ในการผลิตในโรงงานอุตสาหกรรม 2.1 ตัวเรียงกระแสกำลัง (Power Rectifier) 2.2 เครื่องแปลงผันกำลังแบบสถิต (Static Power Converter :SPC) 2.3 ตัวโปรแกรมเมเบิ้ลลอจิกคอนโทรลเลอร์ (Programmable Logic Controller :PLC) 2.4 ชุดขับเคลื่อนปรับความเร็วได้ (Adjustable Speed Drive :ASD) |
|
3.อุปกรณ์ที่มีการทำงานประเภทอาร์ค
3.1
เตาหลอมแบบอาร์ค (Arc Furnace) |
|
4. อุปกรณ์ที่มีความสัมพันธ์ไม่เป็นเชิงเส้นของแรงดันและกระแสเนื่องจากการอิ่มตัวของแกนเหล็กทางแม่เหล็กไฟฟ้า เช่น หม้อแปลงไฟฟ้า (Transformer)และเครื่องกลไฟฟ้า (Electric Machine ) |
|